JOINT UNIVERSITIES PRELIMINARY EXAMINATIONS BOARD 2015 EXAMINATIONS PHYSICS: SCI-J155

MULTIPLE CHOICE QUESTIONS

- 1. A particle with rest mass *m* moves with speed 0.6c. Its kinetic energy is
 - A. $0.18mc^2$
 - B. $0.22mc^2$
 - C. 0.25*mc*²
 - D. mc^2
- 2. Which of the following particles is stable?
 - A. Neutron
 - B. Proton
 - C. Pion
 - D. Muon
- 3. To travel at a constant speed, a car engine provides 24 KW of useful power. The driving

force on the car is 600 N. At what speed does it travel?

- A. 2.5 m s^{-1}
- B. 4.0 m s^{-1}
- C. 25 m s^{-1}
- D. 40 m s^{-1}

4. A pure semiconductor at room temperature has:

A. more electrons/ m^2 in its conduction band than holes/ m^2 in its valence bond

B. more electrons/ m^2 in its conduction band than a typical metal

C. more electrons/ m^2 in its valence band than at T=0K

- D. more electrons/m² inits conduction band than at T = 0K.
- 5. The proper time between two events is measured by clocks at rest in a reference frame in which the two events
 - A. occur at the same time
 - B. occur at the same coordinates
 - C. occur at separate coordinates
 - D. occur at separate times and separate coordinates
- 6. A handbag weighing 162 N is carried by two students each holding the handle of the bag next to him. If each handle is inclined at 60° to the vertical, find the force on each student's arm
 - A. 324 N
 - B.162 N
 - C. 121 N
 - D. 81 N
- 7. A rope is being used to pull a mass of 10 kg vertically upward. Determine the tension on the rope, if starting from rest, the mass acquires a velocity of 4 ms⁻¹ in 8s [g= $10ms^{-2}$].
 - A. 105 N
 - B. 95 N
 - C. 50 N
 - D.55 N

8. A boy observes a piece of stone at the bottom of a river 6.0 m deep. If he looks vertically from the surface of the river, how far does the stone appear to be from him?

[Refractive index of water = $\frac{4}{3}$]

- A. 8.0 m
- B. 4.5 m
- C. 6.0 m
- D. 5.5 m
- 9. A cell has an internal resistance of 0.01 Ω . An instrument that can measure the resistance accurately is
 - A. Ohm- meter
 - B. Potentiometer
 - C. Electroscope
 - D. oscilloscope
- A conductor of length 2m carries a current of 0.8A while kept in a magnetic field of magnetic flux density 0.5 T. The maximum force acting on it is
 - A. 16.2N
 - B. 8.0N
 - C. 3.2N
 - D. 0.8N
- 11. The bond that forms a semiconductor is
 - A. Covalent
 - B. Electrovalent
 - C. Metallic
 - D. Electrostatic

- 12. The particle nature of light is demonstrated by
 - A. Photoelectric effect
 - B. Speed of light
 - C. Colours of light
 - D. Diffraction of light
- 13. ----- law states that at constant pressure, the volume of a given mass of gas is directly proportional to the absolute temperature.
 - A. Charle's
 - B. Gay Lussac's
 - C. Boyle's
 - D. Pascal's
- 14. Use dimensional analysis to determine which of the following equations is certainl

wrong:

- I. λ=vt
- II. F=m/a
- III. F=mv/t
- IV. $h=v^2/2g$
- V. $v=(2gh)^{1/2}$
- A. I only
- B. I and II
- C. II and III
- D. II only
- 15. A ----- can hear sound as high as 100,000Hz
 - A. cat
 - B. bat
 - C. goat
 - D. dog

- 16. For an electron to be ejected from the surface of a metal, the radiation energy must be
 - A. greater than the work function of the metal³
 - B. less than the work function of the metal
 - C. equal to the work function of the metal
 - D. greater than the rest mass energy of the electron
- 17. ----- is the only natural satellite of the earth
 - A. stars
 - B. mercury
 - C. sun
 - D. moon
- - A.0.3 s
 - B.1.0 s
 - C.1.4 s
 - D.2.0 s
- 19. A diver initially moving horizontally with speed *v* dives off the edge of a vertical cliff and lands in the water a distance *d* from the base of the cliff. How far from the base of the cliff would the diver have landed if the diver initially had been moving horizontally with speed 2 v?
 - A. d
 - B.3d
 - C.2d
 - D.4d

- 20.A truck traveled 400 meters north in 80 seconds, and then it traveled 300 meters east in 70 seconds. The magnitude of the average velocity of the truck was most nearly
 - A. 1.2 m/s
 - B. 3.3 m/s
 - C. 4.6 m/s
 - D. 6.6 m/s
- 21. The field intensity at a point close to a charged plane conductor situated in air is $3.5 \times 10^{6} \text{ Vm}^{-1}$. The surface density of charge is:

[Take the permittivity of free space as 8.85×10^{-12} F/m]

- A. 2.53µCm⁻²
- B. $26.55 \times 10^{-12} \text{ Cm}^{-2}$ C. $31.0 \times 10^{-12} \,\mu\text{Cm}^{-2}$
- C. 51.0 ~10 μCl
- D. 31.0 μ Cm⁻²
- 22. Two parallel horizontal metal plates are 25 mm apart and a potential difference of 1000 V is applied across the plates. The field intensity between the plates is:
 - A. 40 Vm⁻¹
 - B. 25000 Vm⁻¹
 - C. 40 kV m^{-1}
 - D. 2.5 kVm⁻¹.
- 23. Which of the following defines the Heisenberg uncertainty principle for position and momentum?
 - A. $\Delta x \Delta p \leq \hbar/2$
 - B. $\Delta x \Delta p = \hbar/2$
 - $C.\; \Delta x \Delta p \geq \hbar/2$
 - D. $\Delta x \Delta p \ge 2\hbar$
- 24. The ejection of an alpha particle from a nucleus results in
 - A. an increase in the atomic number by one
 - B. an increase in the atomic mass by four
 - C. a decrease in the atomic number by two
 - D. none of the above

- 25. Hydrogen-3 is a radioactive isotope of hydrogen. Which type of radiation would you expect an atom of this isotope to emit?
 - (i) beta particle
 - (ii) an alpha particle
 - (iii) a gamma ray
 - A. (i) only
 - B. (ii) only
 - C. (i) and (iii)
 - D. (i), (ii) and (iii)

26. Which of the following are derived units?

- (i) metres
- (ii) Coulomb
- (iii) Kilogram
- (iv) Ampere
- (v) Joule
- A. I and III only
- B. II and V only
- C. II, IV and V only.
- D. I, II, III and IV
- 27. The dimension of power is
 - A. ML^2T^{-3}
 - B.MLT⁻²
 - $C.ML^2T^{-2}$
 - $D.ML^{-2}T^3$

- 28. Which of the following quantities has the same unit as kilowatt hour?
 - A. Force x acceleration
 - B. Force x Velocity
 - C. Force x distance
 - D. Force x time
- 29. An elastic string of length 20cm extends to 24cm when it supports a weight of 50N. The energy stored in the string is?
 - A. 1J
 - B. 2J
 - C. 5J
 - D. 10J
- 30. Which of the following radiations will pass through a sheet of paper?
 - (I) Alpha rays
 - (II) Beta rays
 - (III) Gamma rays
 - A. I only
 - B. I and III only
 - C. I, II and III only
 - D. II and III only
- 31. A metal having a work function of 5.76eV is illuminated with a radiation of 7.88eV. The kinetic energy of the electrons emitted from the metal surface is
 - A. 2.12eV
 - B 1.37eV
 - C. 45.39eV
 - D. 13.64eV

32. What is the energy associated with an X-ray of wavelength $9x10^{-10}m$

(Planck's constant = 6.6×10^{-34} Js and velocity of light 3×10^8 m/s).

- A. $7.5 \times 10^{14} \text{J}$
- B. 2.20x10⁻¹⁶J
- C. $7.5 \times 10^5 \text{J}$
- D. 1.3x10⁻¹⁵J
- 33. Two football players with masses 75 kg and 100 kg run directly toward each other with speeds of 6 m/s and 8 m/s respectively. If they grab each other as they collide, the combined speed of the two players just after the collision would be:
 - A. 2 m/s
 - B. 3.4 m/s
 - C. 4.6 m/s
 - D. 7.1 m/s

34. The velocity of sound in a gas is given by $v_s = \sqrt{\frac{\gamma P}{\rho}}$ where the symbols have their

usual meanings. For a particular gas under certain conditions, v_s is found to be 400ms⁻¹. What is the new value of v_s if the pressure were reduced by 5%?

- A. 89.4 ms⁻¹
- B. 20 ms⁻¹
- C. 100 ms⁻¹
- D. 390 ms⁻¹

35. Which of the following statement is/are true of interference of waves?

- (I) It is a result of superposition of two or more waves.
- (II) It can be explained using corpuscular nature of light.
- (III) It can be explained using wave nature of light waves
- (IV) Only the wave-particle duality of light can be used to explain interferences.
- (V) It produces bright and dark fringes.
- A. I and III only
- B. I and IV only
- C. I, II and V only
- D. I, III and V only

- 36. Resistance of a material depends on the following except
 - A. temperature
 - B. length and cross-section area of the material
 - C. nature of the material
 - D. shape of the material
- 37. An X-ray tube takes a current of 7.0 mA and operates at a potential difference of 80 kV. What power is dissipated?
 - A. 460 W
 - B. 560 W
 - C. 660 W
 - D. 760 W
- 38. Which of the following describes what occurs in the fission process?
 - A. A heavy nucleus is fragmented into lighter ones.
 - B. A neutron is split into a neutron and proton.
 - C. Two light nuclei are combined into a heavier one.
 - D. A proton is split into three quarks.
- 39. The coordinate of a particle in meters is given by $x(t) = 16t 3.0t^3$, where the time t is in seconds. The particle is momentarily at rest at t =
 - A. 0.75 s
 - B. 1.3s
 - C. 5.3s
 - D. 7.3s
- 40. The maximum efficiency of a heat engine which operates between the measured temperatures of 227 °C and 727 °C is
 - A. 50 %
 - B. 20 %
 - C. 30 %
 - D. 40 %

- 41. The stopping potential for electrons ejected by 6.8×10^{14} Hz electromagnetic radiation incident on a certain sample is 1.8V. The kinetic energy of the most energetic electrons ejected and the work function of the sample, respectively, are
 - A. 1.8eV, 2.8eV
 - B. 1.8eV, 1.0eV
 - C. 1.8eV, 4.6eV
 - D. 2.8eV, 1.0eV.
- 42. When a kaon decays via the strong interaction the products must include a:
 - A. baryon
 - B. lepton
 - C. strange particle
 - D. electron
- 43. A particle with spin angular momentum is called a:
 - A. lepton
 - B. hadron
 - C. fermion
 - D. boson.
- 44. Which of the following consists entirely of vector quantities?
 - A. velocity, magnetic flux and reaction
 - B. tension, magnetic flux and mass
 - C. displacement, impulse and power
 - D. work, pressure and moment

- 45. Two forces each of 10N act on a body, one towards the north and the other towards the east. The magnitude and the direction of the resultant force are
 - A. 10N, 45°W
 - B. 20N, 45°E
 - C. $10\sqrt{2}$ N, 45° W
 - D. $10\sqrt{2}$ N, 45° E
- 46. The main reason for making the cover of a vacuum flask air tight is to prevent heat loss by
 - A. conduction
 - B. evaporation
 - C. radiation
 - D. convection
- 47. A cell can supply currents of 0.4A and 0.2A through a 4.0Ω and 10.0Ω resistors respectively. The internal resistance to the cell is
 - Α. 0.5Ω
 - Β. 1.0Ω
 - C. 1.5Ω
 - D. 2.0Ω
- 48. A working electric motor takes a current of 1.5A when the p.d. across it is 250V.

if its efficiency is 80%, the power output is

- A. 562.0W
- B. 469.0W
- C. 300.0W
- D. 133.0W

49. At what frequency would a capacitor of $2.5\mu F$ used in radio circuit have a reactance of

 $250\Omega?$

A. 200π Hz

B.
$$\frac{\pi}{800}$$
Hz

C.
$$\frac{800}{\pi}$$
Hz

- D. 8000π Hz
- 50. A certain radioactive source emits radiations that were found to de deflected by both magnetic and electric fields. The radiations are
 - A. ultra-violet rays
 - B. gamma rays
 - C. alpha rays
 - D. beta rays

PHYSICS ESSAY QUESTIONS

Instruction:

2.

- PHS 001: Questions 1 and 5
- PHS 002: Questions 2 and 6
- PHS 003: Questions 3 and 7
- PHS 004: Questions 4 and 8

1 (a) From a consideration of the flow of a liquid through a narrow tube,	
define viscosity. Express the coefficient of viscosity η in terms of the	
internal frictional force F , surface area A of the liquid and velocity	
gradient $\frac{dv}{dx}$ and derive its units using dimensional analysis.	[2 Marks]
(b) i. Discuss qualitatively the motion of a small metal ball allowed to drop	
downwards in a long vertical tube of viscous liquid so that it moves along	
the axis of the tube. Sketch the variation of velocity v with time t .	[3 Marks]
ii. Write down the equation relating the velocity v of a ball bearing of radius r	
and mass <i>m</i> falling vertically, from rest, in a viscous liquid after an elapsed	
time t. The effect of the buoyancy of the liquid should be neglected.	
Obtain an expression for the terminal velocity v_0 .	[2 Marks]
(c) An object is thrown forward horizontally from the top of a cliff 20 m	
high with a horizontal velocity of 15 m/s. Calculate:	
i. The time to return to the ground	
ii. The horizontal distance from the foot of the cliff at which the object strikes	
the ground. [Take $g = 10 \text{ m/s}^2$].	[3 Marks]
(a) A narrow beam of light traveling in air is incident on a slab of transparent	
material. The incident beam makes an angle of 40.0° with the normal, and	
the refracted beam makes an angle of 26.0° with the normal.	
(Refractive index = 1.00 for air). Use Snell's law of refraction to:	
i. find the index of refraction of the slab material.	[2 Marks]

ii	i. A ray of light, travelling in crown glass of refractive index 1.52, is incident	
	on glass-air interface. Calculate the incident angle at which the total internal	
	reflection begins to occur.	[2 Marks]
	iii. Draw a diagram to support your answer in (ii) above.	[1 Marks]
	iv. Explain the concept of total internal reflection.	[2 Marks]
(b)	Complete the table of the image properties for converging and	
	diverging lenses below:	[3 Marks]

Cases Object Image Lens type Position Position **Orientation** Size Туре 1 >2f <2f Smaller Converging Inverted Real 2 2f Converging (i) Same Real Inverted Size 3 >f but <2f>2f (ii) Real Converging Larger 4 (iii) No image is formed Converging 5 Converging <f >f upright Larger (iv) <f 6 Diverging Any position upright **(v)** Virtual

3 (a) State Ohm's law.

(b) A battery of emf 24 V and internal resistance r is connected to a circuit

having two parallel resistors of 3Ω and 6Ω in series with an 8Ω resistor.

The current flowing in the 3 Ω resistor is 0.8A. Calculate [6 Marks]

- i. The current in the 6 Ω resistor.
- ii. The internal resistance r of the battery.
- iii. The terminal potential difference of the battery.
- (c) i. Define the capacitance of a capacitor.
 - ii. A capacitor carrying 10 μ C charge has a voltage of 50 V across its plates.

[1 Mark]

[1 Mark]

		Calculate its capacitance and the energy stored in it.	[2 Marks]
4 (a)	Define radioactivity.	[1 Mark]
(b (c) () i.	Calculate the total binding energy of an alpha particle. The masses of the neutron, proton and alpha particles are respectively 1.008665 u, 1.007825 u and 4.002603 u. ($1u = 931.5 \text{ MeV/c}^2$). Define half – life of a radioactive substance.	[3 Marks] [1 Mark]
	ii.	Show that half-life $T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$	[2 Marks]
	iii.	Is the decay constant. A radioactive material has as initial activity of 7000 counts per second and an activity of 875 counts per second after 6 hrs. What is the half – life of the material?	[3 Marks]
5 (a)	·	Differentiate between scalar and vector quantities and give two examples in each case	[3 Marks]
(b)	i.	At a stage in the lunch of a satellite the force due to thrust is equal to the gravitational force. Determine the rate of change of the satellite's momentum at that instant.	[2 Marks]
(c)	ii. i. ii.	A truck accelerates uniformly from rest at 2 ms^{-2} for 10 s, maintains a steady velocity for 30 s, and is then brought to rest in 5 s under uniform retardation. Calculate the total distance travelled by the truck. A projectile is launched with an initial velocity of 35 m/s at an angle of 40° to the horizontal. Find The maximum height attained, Total time of flight,	[2 Marks]
	iii. (Range Take $g = 9.8 \text{m/s}$).	[3 Marks]
6. (a)	S	State how three features of a thermo flask is used to heat loss.	[3Marks]
(b)	i. ii. (State Zeroth law of thermodynamics. Give an implication of this law.	[1 Mark] [1Mark]

(c) i. A steel rod hast a length of 30m at $0^{\circ}C$. Calculate the length of the rod

	after it has been heated to 40°C, given that the linear expansion coefficient is 11×10^{-6} °C.	
ii.	A 0.050 kg steel mass, heated to 200.0°C is dropped into a beaker containing 0.400 kg of water. The initial temperature of the water is 20.0°C and the final temperature with the steel is 22.4°C. Calculate the specific heat of	[2 Marks]
	the steel mass. Assume the beaker has negligible heat capacity. Specific heat capacity of water = $4186 \text{ J/kg}^{\circ}\text{C}$.	[3 Marks]
7. (a)	Explain what is meant by a <i>field of force</i> .	[1 Mark]
(b)	State Coulomb's Law.	[1 Mark]
(c)	A negative charge of 6.0×10^{-6} C exerts an attractive force of 65 N on a	
	second charge that is 0.050 m away. What is the magnitude of the	
	second charge?	[3 Marks]
	$(\epsilon_o = 8.85 \text{ x } 10^{-12} \text{ F/m})$	
(d)	Find the currents I ₁ ,I ₂ ,and I ₃ in the circuit below.	[5 Marks]

8. (a)	Explain the term wave-particle duality.	[1 Mark]
(b) i.	Write down, without proof, de Broglie's relation.	[1 Mark]
ii.	A bullet of mass 20 g is moving with a speed of 300 ms ⁻¹ . Calculate the	
	de Broglie wavelength of the bullet.	[3 Marks]
(c)	Define the following: Photoelectric effect and work function.	[2 Marks]
(d)	The threshold frequency for a metal surface is 3×10^{14} Hz, if the metal is	
	illuminated with a radiation of 7.88eV. What is the kinetic energy of	
	the electrons emitted from the metal surface?	
	[Planck constant, $h = 6.6 \times 10^{-34} \text{ J.s}$, 1 eV = 1.602 x 10 ⁻¹⁹ J].	[3 Marks]